[year+3:100]初二数学一次函数知识点总结
时间:2025-06-04 作者:拼职场20252025初二数学一次函数知识点总结(实用7篇)。
[year+3:100]初二数学一次函数知识点总结 篇1
1、平移:二次函数图像经过平移变换不会改变图形的形状和开口方向,因此a值不变。顶点位置将会随着整个图像的平移而变化,因此只要按照点的移动规律,求出新的顶点坐标即可确定其解析式。
例1.将二次函数y=x2-2x-3的图像向上平移2个单位,再向右平移1个单位,得到的新的图像解析式为_____
分析:将y=x2-2x-3化为顶点式y=(x-1)2-4,a值为1,顶点坐标为(1,-4),将其图像向上平移2个单位,再向右平移1个单位,那么顶点也会相应移动,其坐标为(2,-2),由于平移不改变二次函数的.图像的形状和开口方向,因此a值不变,故平移后的解析式为y=(x-2)2-2。
2、轴对称:此图形变换包括x轴对称和关于y轴对称两种方式。
二次函数图像关于x轴对称的图像,其形状不变,但开口方向相反,因此a值为原来的相反数。顶点位置改变,只要根据关于x轴对称的点的坐标特征求出新的顶点坐标,即可确定其解析式。
二次函数图像关于y轴对称的图像,其形状和开口方向都不变,因此a值不变。但是顶点位置会改变,只要根据关于y轴对称的点的坐标特征求出新的顶点坐标,即可确定其解析式。
例2.求抛物线y=x2-2x-3关于x轴以及y轴对称的抛物线的解析式。
分析:y=x2-2x-3=(x-1)2-4,a值为1,其顶点坐标为(1,-4),若关于x轴对称,a值为-1,新的顶点坐标为(1,4),故解析式为y=-(x-1)2+4;若关于y轴对称,a值仍为1,新的顶点坐标为(-1,-4),因此解析式为y=(x+1)2-4。
3、旋转:主要是指以二次函数图像的顶点为旋转中心,旋转角为180°的图像变换,此类旋转,不会改变二次函数的图像形状,开口方向相反,因此a值会为原来的相反数,但顶点坐标不变,故很容易求其解析式。
例3.将抛物线y=x2-2x+3绕其顶点旋转180°,则所得的抛物线的函数解析式为________
分析:y=x2-2x+3=(x-1)2+2中,a值为1,顶点坐标为(1,2),抛物线绕其顶点旋转180°后,a值为-1,顶点坐标不变,故解析式为y=-(x-1)2+2。
[year+3:100]初二数学一次函数知识点总结 篇2
作法
(1)列表:表中给出一些自变量的值及其对应的函数值。
(2)描点:在直角坐标系中,以自变量的值为横坐标,相应的函数值为纵坐标,描出表格中数值对应的各点。
一般地,y=kx+b(k≠0)的图象过(0,b)和(-b/k,0)两点即可画出。
正比例函数y=kx(k≠0)的图象是过坐标原点的一条直线,一般取(0,0)和(1,k)两点画出即可。
(3)连线:按照横坐标由小到大的顺序把描出的各点用平滑曲线连接起来。
性质
(1)在一次函数图像上的任取一点P(x,y),则都满足等式:y=kx+b(k≠0)。
(2)一次函数与y轴交点的坐标总是(0,b),与x轴总交于(-b/k,0)。正比例函数的图像都经过原点。
k,b决定函数图像的位置:
y=kx时,y与x成正比例:
当k>0时,直线必通过第一、三象限,y随x的.增大而增大;
当k<0时,直线必通过第二、四象限,y随x的增大而减小。
y=kx+b时:
当k>0,b>0,这时此函数的图象经过第一、二、三象限;
当k>0,b<0,这时此函数的图象经过第一、三、四象限;
当k<0,b>0,这时此函数的图象经过第一、二、四象限;
当k<0,b<0,这时此函数的图象经过第二、三、四象限。
当b>0时,直线必通过第一、三象限;
当b<0时,直线必通过第二、四象限。
特别地,当b=0时,直线经过原点O(0,0)。
这时,当k>0时,直线只通过第一、三象限,不会通过第二、四象限。当k<0时,直线只通过第二、四象限,不会通过第一、三象限。
平面直角坐标系:在平面内画两条互相垂直、原点重合的数轴,组成平面直角坐标系。
水平的数轴称为x轴或横轴,竖直的数轴称为y轴或纵轴,两坐标轴的交点为平面直角坐标系的原点。
平面直角坐标系的要素:
①在同一平面
②两条数轴
③互相垂直
④原点重合
三个规定:
①正方向的规定横轴取向右为正方向,纵轴取向上为正方向
②单位长度的规定;一般情况,横轴、纵轴单位长度相同;实际有时也可不同,但同一数轴上必须相同。
③象限的规定:右上为第一象限、左上为第二象限、左下为第三象限、右下为第四象限。
平面直角坐标系的构成
在同一个平面上互相垂直且有公共原点的两条数轴构成平面直角坐标系,简称为直角坐标系。通常,两条数轴分别置于水平位置与铅直位置,取向右与向上的方向分别为两条数轴的正方向。水平的数轴叫做X轴或横轴,铅直的数轴叫做Y轴或纵轴,X轴或Y轴统称为坐标轴,它们的公共原点O称为直角坐标系的原点。
点的坐标的性质
建立了平面直角坐标系后,对于坐标系平面内的任何一点,我们可以确定它的坐标。反过来,对于任何一个坐标,我们可以在坐标平面内确定它所表示的一个点。
对于平面内任意一点C,过点C分别向X轴、Y轴作垂线,垂足在X轴、Y轴上的对应点a,b分别叫做点C的横坐标、纵坐标,有序实数对(a,b)叫做点C的坐标。
一个点在不同的象限或坐标轴上,点的坐标不一样。
因式分解的一般步骤
如果多项式有公因式就先提公因式,没有公因式的多项式就考虑运用公式法;若是四项或四项以上的多项式,
通常采用分组分解法,最后运用十字相乘法分解因式。因此,可以概括为:“一提”、“二套”、“三分组”、“四十字”。
注意:因式分解一定要分解到每一个因式都不能再分解为止,否则就是不完全的因式分解,若题目没有明确指出在哪个范围内因式分解,应该是指在有理数范围内因式分解,因此分解因式的结果,必须是几个整式的积的形式。
因式分解定义:把一个多项式化成几个整式的积的形式的变形叫把这个多项式因式分解。
因式分解要素:
①结果必须是整式
②结果必须是积的形式
③结果是等式
④因式分解与整式乘法的关系:m(a+b+c)
公因式:一个多项式每项都含有的公共的因式,叫做这个多项式各项的公因式。
公因式确定方法:
①系数是整数时取各项最大公约数。
②相同字母取最低次幂
③系数最大公约数与相同字母取最低次幂的积就是这个多项式各项的公因式。
提取公因式步骤:
①确定公因式。
②确定商式
③公因式与商式写成积的形式。
分解因式注意;
①不准丢字母
②不准丢常数项注意查项数
③双重括号化成单括号
④结果按数单字母单项式多项式顺序排列
⑤相同因式写成幂的形式
⑥首项负号放括号外
⑦括号内同类项合并。
[year+3:100]初二数学一次函数知识点总结 篇3
一次函数
一、正比例函数与一次函数的概念:
一般地,形如y=kx(k为常数,且k≠0)的函数叫做正比例函数.其中k叫做比例系数。
一般地,形如y=kx+b(k,b为常数,且k≠0)的函数叫做一次函数.
当b=0时,y=kx+b即为y=kx,所以正比例函数,是一次函数的特例.
二、正比例函数的图象与性质:
(1)图象:正比例函数y=kx(k是常数,k≠0))的图象是经过原点的一条直线,我们称它为直线y=kx。
(2)性质:当k>0时,直线y=kx经过第三,一象限,从左向右上升,即随着x的增大y也增大;当k0,b>0图像经过一、二、三象限;
(2)k>0,b<0图像经过一、三、四象限;
(3)k>0,b=0图像经过一、三象限;
(4)k<0,b>0图像经过一、二、四象限;
(5)k<0,b<0图像经过二、三、四象限;
(6)k<0,b=0图像经过二、四象限。
一次函数表达式的确定
求一次函数y=kx+b(k、b是常数,k≠0)时,需要由两个点来确定;求正比例函数y=kx(k≠0)时,只需一个点即可.
5.一次函数与二元一次方程组:
解方程组
从“数”的角度看,自变量(x)为何值时两个函数的值相等.并
求出这个函数值
解方程组从“形”的`角度看,确定两直线交点的坐标.
数据的分析
数据的代表:平均数、众数、中位数、极差、方差
[year+3:100]初二数学一次函数知识点总结 篇4
一次函数的定义
一般地,形如y=kx+b(k,b是常数,且k≠0)的函数,叫做一次函数,其中x是自变量。当b=0时,一次函数y=kx,又叫做正比例函数。
1、一次函数的解析式的形式是y=kx+b,要判断一个函数是否是一次函数,就是判断是否能化成以上形式。
2、当b=0,k≠0时,y=kx仍是一次函数。
3、当k=0,b≠0时,它不是一次函数。
4、正比例函数是一次函数的特例,一次函数包括正比例函数。
一次函数的图像及性质
1、在一次函数上的任意一点P(x,y),都满足等式:y=kx+b。
2、一次函数与y轴交点的坐标总是(0,b),与x轴总是交于(—b/k,0)。
3、正比例函数的图像总是过原点。
4、k,b与函数图像所在象限的关系:
当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小。
当k>0,b>0时,直线通过一、二、三象限;
当k>0,b<0时,直线通过一、三、四象限;
当k<0,b>0时,直线通过一、二、四象限;
当k<0,b<0时,直线通过二、三、四象限;
当b=0时,直线通过原点O(0,0)表示的是正比例函数的图像。
这时,当k>0时,直线只通过一、三象限;当k<0时,直线只通过二、四象限。
一次函数的图象与性质的口诀
一次函数是直线,图象经过三象限;
正比例函数更简单,经过原点一直线;
两个系数k与b,作用之大莫小看,k是斜率定夹角,b与y轴来相见,k为正来右上斜,x增减y增减;
k为负来左下展,变化规律正相反;
k的绝对值越大,线离横轴就越远。
拓展阅读:一次函数的解题方法
理解一次函数和其它知识的联系
一次函数和代数式以及方程有着密不可分的联系。如一次函数和正比例函数仍然是函数,同时,等号的两边又都是代数式。需要注意的是,与一般代数式有很大区别。首先,一次函数和正比例函数都只能存在两个变量,而代数式可以是多个变量;其次,一次函数中的变量指数只能是1,而代数式中变量指数还可以是1以外的数。另外,一次函数解析式也可以理解为二元一次方程。
掌握一次函数的解析式的特征
一次函数解析式的结构特征:kx+b是关于x的一次二项式,其中常数b可以是任意实数,一次项系数k必须是非零数,k≠0,因为当k = 0时,y = b(b是常数),由于没有一次项,这样的函数不是一次函数;而当b = 0,k≠0,y = kx既是正比例函数,也是一次函数。
应用一次函数解决实际问题
1、分清哪些是已知量,哪些是未知量,尤其要弄清哪两种量是相关联的量,且其中一种量因另一种量的变化而变化;
2、找出具有相关联的两种量的等量关系之后,明确哪种量是另一种量的函数;
3、在实际问题中,一般存在着三种量,如距离、时间、速度等等,在这三种量中,当且仅当其中一种量时间(或速度)不变时,距离与速度(或时间)才成正比例,也就是说,距离(s)是时间(t)或速度( )的'正比例函数;
4、求一次函数与正比例函数的关系式,一般采取待定系数法。
数形结合
方程,不等式,不等式组,方程组我们都可以用一次函数的观点来理解。一元一次不等式实际上就看两条直线上下方的关系,求出端点后可以很容易把握解集,至于一元一次方程可以把左右两边看为两条直线来认识,直线交点的横坐标就是方程的解,至于二元一次方程组就是对应2条直线,方程组的解就是直线的交点,结合图形可以认识两直线的位置关系也可以把握交点个数。
如果一个交点时候两条直线的k不同,如果无穷个交点就是k,b都一样,如果平行无交点就是k相同,b不一样。至于函数平移的问题可以化归为对应点平移。k反正不变然后用待定系数法得到平移后的方程。这就是化一般为特殊的解题方法。
[year+3:100]初二数学一次函数知识点总结 篇5
轴对称
1.如果一个平面图形沿着一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,这条直线叫做对称轴。
2.性质
(1)成轴对称的两个图形全等;
(2)如果两个图形成轴对称,那么对称轴是对称点连线的垂直平分线。
一次函数
(一)一次函数是函数中的一种,一般形如y=kx+b(k,b是常数,k≠0),其中x是自变量,y是因变量。特别地,当b=0时,y=kx+b(k为常数,k≠0),y叫做x的正比例函数。
(二)函数三要素
1.定义域:设x、y是两个变量,变量x的变化范围为D,如果对于每一个数x∈D,变量y遵照一定的法则总有确定的数值与之对应,则称y是x的函数,记作y=f(x),x∈D,x称为自变量,y称为因变量,数集D称为这个函数的定义域。
2.在函数经典定义中,因变量改变而改变的取值范围叫做这个函数的值域,在函数现代定义中是指定义域中所有元素在某个对应法则下对应的所有的象所组成的集合。如:f(x)=x,那么f(x)的取值范围就是函数f(x)的值域。
3.对应法则:一般地说,在函数记号y=f(x)中,“f”即表示对应法则,等式y=f(x)表明,对于定义域中的任意的x值,在对应法则“f”的作用下,即可得到值域中唯一y值。
(三)一次函数的表示方法
1.解析式法:用含自变量x的式子表示函数的方法叫做解析式法。
2.列表法:把一系列x的值对应的函数值y列成一个表来表示的函数关系的方法叫做列表法。
3.图像法:用图象来表示函数关系的方法叫做图象法。
(四)一次函数的性质
1.y的变化值与对应的x的变化值成正比例,比值为k。即:y=kx+b(k≠0)(k不等于0,且k,b为常数)。
2.当x=0时,b为函数在y轴上的交点,坐标为(0,b)。当y=0时,该函数图象在x轴上的交点坐标为(-b/k,0)。
3.k为一次函数y=kx+b的斜率,k=tanθ(角θ为一次函数图象与x轴正方向夹角,θ≠90°)。
4.当b=0时(即y=kx),一次函数图象变为正比例函数,正比例函数是特殊的一次函数。
5.函数图象性质:当k相同,且b不相等,图像平行;当k不同,且b相等,图象相交于Y轴;当k互为负倒数时,两直线垂直。
6.平移时:上加下减在末尾,左加右减在中间。
直角三角形
1.勾股定理及其逆定理
定理:直角三角形的两条直角边的等于的平方。
逆定理:如果三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形。
2.含30°的直角三角形的边的性质
定理:在直角三角形中,如果一个锐角等于30°,那么等于的一半。
3.直角三角形斜边上的中线等于斜边的一半。
-
拼职场小编精心推荐:
- 一次函数知识点 | [year+3:100]初二数学一次函数知识点总结 | 数学初二知识点总结 | 初二数学下册知识点 | 2025初二数学一次函数知识点总结 | 一次函数知识点
要点诠释:
①勾股定理的逆定理在语言叙述的时候一定要注意,不能说成“两条边的平方和等于斜边的平方”,应该说成“三角形两边的平方和等于第三边的平方”。
②直角三角形的全等判定方法,HL还有SSS,SAS,ASA,AAS,一共有5种判定方法。
图形的平移与旋转
1、平移,是指在同一平面内,将一个图形上的所有点都按照某个直线方向做相同距离的移动,这样的图形运动叫做图形的平移运动,简称平移。
2、平移性质
(1)图形平移前后的形状和大小没有变化,只是位置发生变化。
(2)图形平移后,对应点连成的线段平行(或在同一直线上)且相等。
拓展阅读:初中数学提高解题速度的方法
认真仔细审题
对于一道具体的习题,解题时最重要的环节是审题。审题的第一步是读题,这是获取信息量和思考的过程。读题要慢,一边读,一边想,应特别注意每一句话的内在涵义,并从中找出隐含条件。
有些学生没有养成读题、思考的习惯,心里着急,匆匆一看,就开始解题,结果常常是漏掉了一些信息,花了很长时间解不出来,还找不到原因,想快却慢了。所以,在实际解题时,应特别注意,审题要认真、仔细。
做好归纳总结
在解过一定数量的习题之后,对所涉及到的知识、解题方法进行归纳总结,以便使解题思路更为清晰,就能达到举一反三的效果,对于类似的`习题一目了然,可以节约大量的解题时间。
熟悉习题内容
解题、做练习只是学习过程中的一个环节,而不是学习的全部,你不能为解题而解题。解题时,我们的概念越清晰,对公式、定理和规则越熟悉,解题速度就越快。
因此,我们在解题之前,应通过阅读教科书和做简单的练习,先熟悉、记忆和辨别这些基本内容,正确理解其涵义的本质,接着马上就做后面所配的练习,一刻也不要停留。
学会主动画图
画图是一个翻译的过程,把解题时的抽象思维,变成了形象思维,从而降低了解题难度。有些题目,只要分析图一画出来,其中的关系就变得一目了然。尤其是对于几何题,包括解析几何题,若不会画图,有时简直是无从下手。
因此,牢记各种题型的基本作图方法,牢记各种函数的图像和意义及演变过程和条件,对于提高解题速度非常重要。
逐步增加难度
人们认识事物的过程都是从简单到复杂。简单的问题解多了,从而使概念清晰了,对公式、定理以及解题步骤熟悉了,解题时就会形成跳跃性思维,解题的速度就会大大提高。
我们在学习时,应根据自己的能力,先去解那些看似简单,却很重要的习题,以不断提高解题速度和解题能力。随着速度和能力的提高,再逐渐增加难度,就会达到事半功倍的效果。
[year+3:100]初二数学一次函数知识点总结 篇6
一、轴对称图形
1、把一个图形沿着一条直线折叠,如果直线两旁的部分能够完全重合,那么这个图形就叫做轴对称图形。
2、这条直线就是它的对称轴。这时我们也说这个图形关于这条直线(成轴)对称。
3、把一个图形沿着某一条直线折叠,如果它能与另一个图形完全重合,那么就说这两个图关于这条直线
4、轴对称与轴对称图形的性质
①关于某直线对称的两个图形是全等形。
②如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线。
③轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线。
④如果两个图形的对应点连线被同条直线垂直平分,那么这两个图形关于这条直线对称。
⑤两个图形关于某条直线成轴对称,如果它们的对应线段或延长线相交,那么交点在对称轴上。
二、线段的垂直平分线
1.定义:经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线,也叫中垂线。
2.性质:线段垂直平分线上的点与这条线段的两个端点的距离相等
3.判定:与一条线段两个端点距离相等的点,在线段的垂直平分线上
三、用坐标表示轴对称小结:
1.在平面直角坐标系中
①关于x轴对称的点横坐标相等,纵坐标互为相反数;
②关于y轴对称的点横坐标互为相反数,纵坐标相等;
③关于原点对称的点横坐标和纵坐标互为相反数;
④与X轴或Y轴平行的直线的两个点横(纵)坐标的关系;
⑤关于与直线X=C或Y=C对称的坐标
点(x, y)关于x轴对称的点的坐标为_(x, -y)_____.
点(x, y)关于y轴对称的点的坐标为___(-x, y)___.
2.三角形三条边的垂直平分线相交于一点,这个点到三角形三个顶点的距离相等
四、(等腰三角形)知识点回顾
1.等腰三角形的性质
①.等腰三角形的两个底角相等。(等边对等角)
②.等腰三角形的'顶角平分线、底边上的中线、底边上的高互相重合。(三线合一)
理解:已知等腰三角形的一线就可以推知另两线。PZc5.cOm
2、等腰三角形的判定:
如果一个三角形有两个角相等,那么这两个角所对的边也相等。(等角对等边)
五、(等边三角形)知识点回顾
1、等边三角形的性质:
等边三角形的三个角都相等,并且每一个角都等于600 。
2、等边三角形的判定:
①三个角都相等的三角形是等边三角形。
②有一个角是600的等腰三角形是等边三角形。
3.在直角三角形中,如果一个锐角等于30,那么它所对的直角边等于斜边的一半。
[year+3:100]初二数学一次函数知识点总结 篇7
反比例函数
y=k/x(k≠0)的图象叫做双曲线。
当k>0时,双曲线在一、三象限(在每一象限内,从左向右降);
当k<0时,双曲线在二、四象限(在每一象限内,从左向右上升)。
因此,它的增减性与一次函数相反。
以上对反比例函数知识点的讲解,相信同学们能很好的掌握了,希望同学们能很好的学习知识点。
初中数学知识点总结:平面直角坐标系
下面是对平面直角坐标系的内容学习,希望同学们很好的掌握下面的`内容。
平面直角坐标系
平面直角坐标系:在平面内画两条互相垂直、原点重合的数轴,组成平面直角坐标系。
水平的数轴称为x轴或横轴,竖直的数轴称为y轴或纵轴,两坐标轴的交点为平面直角坐标系的原点。
平面直角坐标系的要素:
①在同一平面
②两条数轴
③互相垂直
④原点重合
三个规定:
①正方向的规定横轴取向右为正方向,纵轴取向上为正方向
②单位长度的规定;一般情况,横轴、纵轴单位长度相同;实际有时也可不同,但同一数轴上必须相同。
③象限的规定:右上为第一象限、左上为第二象限、左下为第三象限、右下为第四象限。
相信上面对平面直角坐标系知识的讲解学习,同学们已经能很好的掌握了吧,希望同学们都能考试成功。
-
推荐阅读:
2025初二数学一次函数知识点总结(精华6篇)
一次函数知识点
初中数学函数知识点归纳总结(集合四篇)
初一政治知识点总结之二
[总结]初二数学下学期知识点回顾1000字
初一数学知识点归纳总结(汇总六篇)
-
欲了解[year+3:100]初二数学一次函数知识点总结网的更多内容,可以访问:[year+3:100]初二数学一次函数知识点总结
本文来源:http://www.pzc5.com/p/29048.html